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With the aim of identifying molecules that are expressed specifically in the brain during
neurogenesis, we tried to generate monoclonal antibodies which recognize molecules
showing unique temporal expression patterns and molecular characteristics. We used a
homogenate of the rat fetal forebrain (day 12 of fetal life, E12) as an immunogen, and
antibodies which reacted with this preparation were screened by immunoblotting. One of
the antibodies, Mab3C8, recognized a 100-kDa antigen that is enriched in fetal brain. This
100-kDa antigen was constantly expressed during fetal life (from E12 to E20) and became
scarcely detectable two days after birth. The antigen was detected in the insoluble fraction
of fetal brain and its isoelectric point ranged from 6 to 7, suggesting that it was a
membrane-coupled glycoprotein. Analysis by glycosidase treatment and lectin blotting
suggested that it was an O-linked glycoprotein with an aZfi sialyl linkage. Thus, a molecule
unique to the fetal brain, an O-linked sialoglycoprotein with a molecular mass of 100 kDa
(FOG100), was found by generating an antibody.

Key words: fetal brain, FOG100, monoclonal antibody, O-glycosylation, sialoglycoprotein.

The neural cell population of the fetal brain proliferates and
differentiates to form neurons in a precise temporal and
spatial manner {1-3). Neural cells exist in the ventricular
zone as stem, progenitor, or precursor cells, which give rise
to different types of neurons, oligodendrocytes, and astro-
cytes; and neurogenesis is known to be completed in the
mammalian cerebrum by late embryogenesis (1, 2). The
neural network then undergoes the processes of neurite
outgrowth, axon fasciculation, synaptogenesis, and myeli-
nation during the perinatal stage (2).

Several markers for the developing mammalian central
nervous system (CNS) have been identified, and glycocon-
jugates seem to be important factors in the development of
the mammalian CNS, being involved in the regulation of
cell-to-cell interactions and the modification of synaptic
activity (4). For example, polysialic acid is attached to the
protein backbone of neural cell adhesion molecule (N-
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CAM) and of voltage-dependent sodium ion channels (4, 5),
and a new dimension has thus been added to the complexity
of protein structure and function. To date, however,
developmentally expressed O-linked glycoproteins have
not been reported in the mammalian CNS. We have
investigated developmentally regulated genes and glyco-
conjugates in fetal or placental tissues (6-10).

In rats and mice, embryonic day 11-12 (E11-E12) seems
to be a critical stage at which many multipotential stem
cells and developing neuronal cells coexist (11). In the
present study, we tried to find molecules that show unique
temporal expression patterns and molecular characteristics
by generating monoclonal antibodies using a homogenate of
the rat E12 forebrain as an immunogen. The antigen
detected by one of these antibodies possessed these attrib-
utes and was designated FOG100.

MATERIALS AND METHODS

Reagents—The reagents used were purchased as follows:
pepstatin, aprotinin, leupepsin, and PNGase F (iV-Glyco-
sidase F; EC 3.2.2.18) from Boehringer Mannheim (Ger-
many); urea and protein quantifying reagents (Bio-Rad
Protein Assay) from Bio-Rad (Richmond, CA, USA);
Nonidet P-40, acrylamide, ampholytes (pH 3-10), dithio-
threitol, and polyvinylidene difluoride (PVDF) membranes
from Millipore (Bedford, MA, USA); fetal calf serum from
Causera (Ontario, Canada); RPMI1640 medium from
GEBCO BRL Life Technology (New York, NY, USA);
bovine serum albumin (BSA), streptomycin, and penicillin
from Sigma Chemical (St. Louis, MO, USA); Pristane from
Aldrich Chemical (Milwaukee, WI, USA); biotin-Sam-
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bucus 8ieboldiana agglutinin (SSA), biotin-Maacfcia amur-
ensis lectin (MAA), and horseradish peroxidase (HRP)-
peanut agglutinin (PNA) from Honen (Tokyo); HRP-strep-
tavidin from Vector (Burlingame, CA, USA); HRP-con-
jugated goat anti-mouse IgG+IgM antiserum from Jack-
son Immunoresearch (West Grove, PA, USA); PD-10
columns and CNBr- activated Sepharose 4B from Phar-
macia Biotech (Uppsala, Sweden); sialidase (source:
Arthrobacter ureafaciens; EC 3.2.1.18) from Nacalai
(Kyoto); endo-<r-iV-acetylgalactosaminidase (O-Glycan-
ase; EC 3.2.1.97) from Genzyme (Cambridge, MA, USA);
7i-octyl-/9-D-glucoside and decanoyl-N-methylglucamide
(MEGA-10) from DOJINDO (Kumamoto); Block Ace, a
blocking reagent for immunoblotting, from Snow Brand
(Sapporo); ECL western blotting kit and mouse monoclonal
antibody isotyping kit from Amersham (Buckinghamshire,
UK); and phenylmethylsulfonyl fluoride (PMSF) and all
other reagents, unless otherwise stated, from Wako Pure
Chemicals (Osaka).

Animal Treatment—Adult Wistar-Imamichi rats were
purchased from the Imamichi Institute for Animal Repro-
duction (Ibaraki). They were kept under a lighting regime
of 14-h illumination and 10-h darkness (lights on between
0500 h and 1900 h) and were allowed free access to food and
water. The day of insemination was designated E0. To
prepare the immunogen and allow subsequent immunoblot-
ting, the brain and other tissues of fetal (E12-20), neonatal
(postnatal days P0-10), or adult rats were removed follow-
ing decapitation. They were then dissected as appropriate,
washed with 0.9% NaCl, frozen in liquid nitrogen, and
stored at — 80*C until use.

The BALB/cA mice used for monoclonal antibody pro-
duction were purchased from Nihon Clea (Tokyo) and were
kept as described above.

Production and Purification of the Monoclonal Anti-
bodies—Monoclonal antibodies were generated using
X63Ag8 as the parental myeloma ceD line, as described by
KShler and Milstein (12). To prepare the immunogen, E12
rat forebrains were homogenized with 20 volumes (w/v) of
homogenization buffer [10 mM phosphate-buffered saline
(PBS) containing 20 IU/ml aprotinin, 1 ^M leupepsin, 0.1
mg/ml pepstatin, and 0.1 mM PMSF], then diluted 10
times. Each mouse was immunized with 0.5 ml of the
homogenate mixed with an equal volume of Freund's
complete adjuvant. The immunization was repeated 3
times at 3-week intervals using the antigen with incomplete
adjuvant. The antibodies were screened by immunoblotting
on E12.5 and adult rat brain homogenates. One of these
antibodies, designated Mab3C8 (IgM, x-chain), recognized
an antigen that was expressed in the E12 but not in the
adult brain (Fig. 1A).

The antibody was purified from mouse ascites using a
hydroxyapatite column (SH-0710M; Asahi Optical; Tokyo)
connected to a Waters 600E HPLC system, in which elution
was performed with a linear gradient of 100-400 mM
sodium phosphate buffer (pH 6.8) containing 100 mM
NaCl.

Immunoblotting—Sodium dodecyl sulfate/polyacryl-
amide gel electrophoresis (SDS-PAGE) and immunoblot-
ting were performed as described previously (13). Briefly,
tissues were homogenized with 20 volumes (w/v) of
homogenization buffer, then diluted 10 times. Aliquots of
20 fx\ (about 20 fig protein equivalent) were subjected to

SDS-PAGE (5-8% w/v gel). Mab3C8, as the supernatant of
the hybridoma culture (dilution: 1:2) or purified Mab3C8
(final concentration: 1 ̂ g/ml), was reacted for 1 h at room
temperature (RT), and visualized using HEP-conjugated
anti-mouse antiserum and an ECL Western blotting kit.

For subcellular fractionation, E20 cerebrum was homog-
enized with 5 volumes (w/v) of 3 mM Tris-HCl (pH 7.4)
containing 0.25 M sucrose (fractionation buffer). After
centrifugation at 700 X g for 10 min, the resulting precipi-
tate was regarded as the crude nuclear fraction. The
supernatant was then centrifuged at 105,000 x ^ for 60
min. The resulting precipitate was regarded as the crude
microsomal fraction, and the supernatant as the crude
cytosolic fraction. Each fraction was adjusted to the same
volume with fractionation buffer, and aliquots of the same
size were subjected to immunoblotting as described above.

Two-Dimensional Electrophoresis—Two-dimensional
electrophoresis (2D/E) was performed as described previ-
ously (14). A 50-//g equivalent of rat E20 homogenate was
loaded into a capillary tube (1.2 mm diameter X 150 mm
length) containing 9.5 M urea, 4% (v/v) Nonidet P-40,
4.1% (w/v) acrylamide, and 5.8% (v/v) ampholytes (pH 3-
10). This mixture was then loaded onto a SDS-PAGE (8%
w/v) gel (150 mmX 150 mmX 1 mm) and run for 1.5 h at
250 V.

Purification of FOG100—Mab3C8 was coupled to CNBr-
activated Sepharose 4B according to the manufacturer's
instructions. After centrifugation of E20 cerebral homog-
enate in homogenization buffer at 105,000 Xg at 4*C, the
precipitate was solubilized with PBS containing 2% SDS
and applied to a SDS/polyacrylamide (5% w/v) gel. The
bands corresponding to 100 kDa were cut out and electro-
eluted at 100 V for 20 h with SDS-PAGE loading buffer.
The electroeluted FOG100 was desalted in a PD-10 column,
then mixed with the Mab3C8-coupled resin by end-over-
end rotation in 10 mM Tris-HCl (pH 7.4) containing 140
mM NaCl and 1% (w/v) n-octyl-/?-D-glucoside (starting
buffer) at 4°C for 8 h. The gel suspension (2 ml) was then
packed into a column and washed with a 10-gel volume of
starting buffer. The FOG100 was eluted using 10 mM
Tris-HCl (pH 7.4) containing 800 mM NaCl and 1% (w/v)
n - octy 1 - p - D - glucoside.

Glycosidase Treatment—Before treating with sialidase,
FOG100 was boiled for 5 min in 100 mM sodium acetate
buffer (pH 5.0) containing 0.2% SDS. After adding MEGA-
10 (final concentration: 2%) and PMSF (final concentration:
0.1 mM), the FOG100 was incubated with 250mU/ml
sialidase at 37"C overnight. For treatment with AT-Glyco-
sidase F, FOG100 was treated similarly except that 15 mM
sodium phosphate buffer (pH 7.4) containing 50 mM eth-
ylenediaminetetraacetic acid (EDTA) and 0.2% SDS was
used, followed by incubation with 40 mU/ml iV-Glyco-
sidase F at 37'C overnight.

For O-Glycanase digestion, FOG100 was boiled in 15
mM sodium phosphate buffer (pH 7.4) containing 50 mM
EDTA for 5 min. After adding MEGA-10 and PMSF, the
sample was incubated with 250 mU/ml sialidase at 37"C for
5h, then with 25 mU/ml O-Glycanase at 37'C for an
additional 20 h.

Lectin Blotting—After treatment with sialidase or O-
Glycanase, the FOG100 preparations were subjected to
SDS-PAGE followed by lectin blotting using biotin-SSA,
biotin-MAA, or HRP-PNA. After SDS-PAGE, the PVDF
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membrane to which the blots has been transferred was
treated with 0.05% (v/v) polyoxyethene sorbitan mono-
laurate in 10 mM Tris (pH 7.4) containing 140 mM NaCl to
avoid nonspecific binding. The PVDF membrane was then
incubated with each lectin at a final concentration of 1 //g/
ml at RT for 1 h. Blotting with PNA and other lectins was
visualized with ECL and the HRP-streptavidin-ECL sys-
tem, respectively.

RESULTS

Production of Mab3C8 Recognizing FOGlOO—A mono-
clonal antibody named Mab3C8 was obtained after screen-
ing as described in "MATERIALS AND METHODS" (Fig. 1A).
Mab3C8 recognized a band with a molecular weight (MW)
of 100 kDa (FOGlOO) in the rat E12 forebrain. In contrast,
FOGlOO was not detected in the adult rat brain.

To investigate the ontogeny and fate of FOGlOO, brain
homogenates obtained on various embryonic and postnatal
days were subjected to immunoblotting using Mab3C8 (Fig.
IB). Interestingly, FOGlOO was detected in the fetal
forebrain/cerebrum on E12,13,14,16,18, and 20, and was
not detected in the adult cerebrum. On the day of birth, a
clear band of FOGlOO was observed, and this became
scarcely detectable on day 2. Thus, FOGlOO was quite
unique to fetal life and was only expressed during the
second half of embryogenesis.

Intracellular and Tissue Distribution of FOGlOO—The
intracellular distribution of FOGlOO was investigated using
the subcellular fractions prepared from E20 cerebrum (Fig.
1C). FOGlOO was detected in the crude nuclear and
microsomal fractions, but not in the cytosolic fraction.

The tissue distribution of FOGlOO in fetal tissues (E16)
is shown in Fig. ID. FOGlOO was detected in the brain, and
its expression in the cerebrum was higher than that in the
rest of the brain. FOGlOO was scarcely detectable in the
liver and the heart. Therefore, FOGlOO was predominantly
expressed in the fetal cerebrum.

Two-Dimensional Electrophoresis of FOGlOO—To de-
termine the isoelectric point (pi) of the antigen, the E20
cerebral homogenate was subjected to 2D/E followed by
immunoblot analysis (Fig. 2A). The pi of FOGlOO ranged
from 6 to 7 at several spots, suggesting that the core
molecule of FOGlOO was modified by electrically charged
molecules, such as glycans.

Purification of FOGlOO—FOGlOO was purified using
preparative SDS-PAGE followed by immunoadsorption
chromatography. The FOGlOO fraction was separated on
preparative SDS-PAGE gels and detected by immunoblot-
ting using Mab3C8 and Coomassie Brilliant Blue staining
(Fig. 2B). This partially purified FOGlOO preparation was
subjected to treatment with glycosidases (Fig. 2C) or to a
further purification step using Mab3C8-immunoadsorption
chromatography (Fig. 3A).

The FOGlOO adsorbed by the column during further
purification was eluted with buffer containing 800 mM
NaCl, as described in "MATERIALS AND METHODS." In this
fraction, a band corresponding to FOGlOO was detected
using silver staining (Fig. 3A). This purified preparation
was used for lectin blotting (Fig. 3, B and C).

Characterization of FOGlOO by Digestion with Glyco-
sidases and Lectin Blotting—FOGlOO, partially purified by
preparative SDS-PAGE, was treated with sialidase and

subjected to immunoblotting with Mab3C8 (Fig. 2C). After
sialidase treatment, the FOGlOO band was not detectable
on immunoblotting. Therefore, the epitope recognized by
Mab3C8 contained sialic acid. Following treatment with
N-Glycosidase F, the FOGlOO band did not shift, suggest-
ing that FOGlOO does not contain iV-linked oligosaccha-
rides. These enzymes are specific for oligosaccharides of
glycoproteins and showed no protease activity when used to
analyze recombinant rat Leukemia Inhibitory Factor and
Placental Lactogen, which is highly glycosylated (data not
shown).

To further characterize the oligosaccharide structure of
FOGlOO, the preparation purified on the immunoaflinity
column was subjected to lectin blotting (Fig. 3). FOGlOO
did not react with MAA but was positively stained by SSA,

E12 Adult

100k — I

B E12 E13 E14 E16 E18 E20

PO P2 P4 P6 P8 PIOAduB

n m c

E16 P10

Fig. 1. A: Mab3C8 recognized a 100-kDa antigen (FOGlOO).
Homogenates of brains from E12 and adult rats were subjected to
SDS-PAGE under non-reducing conditions and visualized by im-
munoblotting, as described in "MATERIALS AND METHODS."
Note that FOGlOO is expressed in the rat E12 forebrain, but not in the
adult cerebrum. B: Developmental regulation of FOGlOO expres-
sion. A homogenate of the forebrain/cerebrum was prepared from
E12, E13, E14, E16, E18, E20, PO, P2, P4, P6, P8, P10, or adult rats.
C: The intracellular localization of FOGlOO. The E20 homogenate
was fractionated into nuclear (n), microsomal (m), and cytosolic
fractions (c), as described in 'MATERIALS AND METHODS." The
entire homogenate and the three fractions were analyzed by im-
munoblotting. FOGlOO was expressed in the microsomal and nuclear
fractions of the fetal brain, but levels had decreased dramatically by
P2, and was undetectable in the adult brain. D: Tissue distribution
of FOGlOO. Tissue homogenates from the heart (1), liver (2),
cerebrum (3), and the rest of the brain (4) at E16, and from the heart
(1), liver (2), cerebrum (3), and cerebellum (4) at P10 were subjected
to SDS-PAGE followed by immunoblotting. FOGlOO was expressed
in the brain at E16. At P10, no expression of FOGlOO was observed
in any of the tissues examined.
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Fig. 2. A: 2D/E analysis of FOG100. An E20 brain homogenate
was subjected to 2D/E followed by immunoblotting. FOG100 exhibit-
ed a broad isoelectric point (pi 6-7) (ellipse). B: Partial purification
of FOG100. A fetal cerebral homogenate of (E20) (a) or FOG100
partially purified by preparative SDS-PAGE (b) was analyzed by
SDS-PAGE followed by staining with Coomassie Brilliant Blue (CBB)
or immunoblotting with Mab3C8. C: Characterization of FOG100
by treatment with glycosidases. The partially purified FOG100
preparation was treated with iV-Glycosidase F or sialidase, then
subjected to SDS-PAGE followed by immunoblotting. 1, FOG100; 2,
FOG100 treated with the enzyme; 3, enzyme only. Arrowheads
indicate FOG100.

suggesting that it contained an a-2,6 sialyl linkage. SSA also
reacted with glycoproteins in the FCS, as shown in Fig. 3B,
lower panels. Under the same experimental conditions, no
band reacted with Mab3C8. Therefore, the epitope is not
completely identical to the SSA-recognition site.

Next, the oligosaccharide core to which the sialic acids
were linked was characterized using PNA. FOG100 was
detected with PNA only after digestion with sialidase (Fig.
3C, lane 2), confirming that the epitope recognized by
Mab3C8 contains sialic acid. This result also suggests that
the core structure is Gal/?l,3GalNAc-O-Ser/Thr. In accor-
dance with this result, the band corresponding to FOG100
became scarcely detectable with PNA after O-Glycanase
treatment. Therefore, FOG100 was shown to be an O-link-
ed sialoglycoprotein.

DISCUSSION

The O-linked sialoglycoprotein with a MW of 100 kDa
detected in this study was designated FOG100. FOG100 is
strongly expressed in the fetal brain and differs from
previously reported marker molecules for the developing
CNS. The proliferation and migration of neuronal cells are
completed by late embryogenesis (1, 2), and are followed
by the processes crucial for higher brain function, including

Mab3C8

Pre w #5

Silverstain

Pre w #5

B MAA SSA Mab3C8

1 2 3 1 2 3 1 2 3

PNA

1 2 3

Fig. 3. A: Purification of FOG100 on a Mab3C8-inununoaffi-
nity column. The FOG100 preparation (Pre: partially purified as
shown in Fig. 2B) was subjected to column chromatography. The
column was washed with 10 mM Tris-HCl (pH 7.4) containing 140
mM NaCl and 1% (w/v) n-octyl-/3-D-glucoside, and FOG100 was
eluted with 10 mM Tris-HCl (pH 7.4) containing 800 mM NaCl and
1% (w/v) 7i-octyl-/?-D-glucoside. The washing fraction (w) and the
bound fractions (500 p\ each) were collected and subjected to im-
munoblotting with Mab3C8 and silver staining. Bound fraction #5
corresponded to purified FOG100. The arrowhead indicates FOG100.
B: (Upper Panels) Characterization of the sialyl moiety of
FOG100 by lectin blotting with biotin-SSA, biotin-MAA and
Mab3C8.1, untreated FOG100; 2, FOG100 treated with sialidase; 3,
sialidase only. FOG100 was detected by SSA after treatment with
sialidase. The arrowhead indicates FOG10O. (Lower Panels), FCS
treated with or without sialidase was shown as controls. 1,
untreated FCS; 2, FCS treated with sialidase; 3, sialidase only.
Horizontal bars indicate the molecular weights of 76 and 53 kDa. C:
Characterization of the O-glycosidic oligosaccharide moiety of
FOG100 by lectin blotting with PNA. 1, FOG100; 2, FOG100
treated with sialidase; 3, FOG100 sequentially treated with sialidase
and O-Glycanase; 4, sialidase only, 5, O-Glycanase only. FOG100
was detected only after treatment with sialidase. The arrowhead
indicates FOG100.

axon fasciculation, synapse formation, and myelination (2).
Considering its expression period, FOG100 represents an
interesting potential tool for the study of neurogenesis.

It is known that the O-linked sugars attached to the
membrane proteins of most mammalian tissues have a
disaccharide core, and three types of sialyl linkage, a2,3,
a2,6, and #2,8, have been reported {15). In this study, the
sialyl linkage within FOG100 was determined using SSA,
which recognizes Siaa2,6GalNAc and Siaff2,6GalySl,
4GlcNAc links in both N- and O-glycosidic oligosaccharides
(16), and MAA, which recognizes the terminal structure
Siaa2,3Gal in AMinked oligosaccharides (17). Based on
the results of lectin blotting with SSA, FOG100 is thought
to contain an a-2,6 sialyl linkage. In addition, FOG100
became reactive with PNA only after sialidase treatment,
indicating that its epitope contains an O-linked sialo-oligo-
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saccharide. Because PNA recognizes the disaccharide core,
Gal/91,3GalNAc-0-Ser/Thr (18), but does not react if
terminal sialic acids are bound to the disaccharide, the
structure of the epitope can be deduced as: Gal/31,3(8130-2,
6)GalNAc-; Siao-2,6Gal/?l,3(Siao-2,6) GalNAc-; orSiaa2,
3Gal/?l,3(Siao-2,6)GaINAc-. To the best of our knowledge,
however, the oligosaccharide structure Siaa2,6Gal/91,
3(Siaa2,6) GalNAc has not previously been found in native
glycoproteins.

Most of the O-glycosylated proteins are known to contain
one or more iV-glycosidic oligosaccharides (19). It is,
however, clear that FOG100 does not have iV-linked
oligosaccharides, and it is thus unique in terms of contain-
ing solely O-glycosidic oligosaccharides. N-CAM is highly
polysialylated on the oligosaccharides attached to its aspar-
agine residues during the late embryonic and early post-
natal stages, but becomes less sialylated during the early
embryonic and adult stages (20). Polysialic acid seems to be
required for neurite outgrowth (5, 21), synaptic plasticity
(22), and the migration of oligodendrocyte precursors (23),
and seems to be transferred to N-CAM by an a2,8-sialyl-
transferase, ST8Sia H/STX (24). Therefore, FOG100 will
be an interesting molecule with which to investigate neural
development in the rat because its structure, like its
expression pattern, are quite unique.

Since Mab3C8 recognizes the carbohydrate moiety con-
taining sialic acid, the disappearance of FOG100 after birth
as assessed by immunoblotting does not necessarily indi-
cate that the whole molecule is not expressed. In other
words, the structure of the carbohydrate portion may
change during development. Changes in the activity or
expression of sialyltransferase or sialidase in the brain
might be involved in the mechanism of its apparent
disappearance. Indeed, a-2,6-sialyltransferase has been
reported to participate in the formation of the neural
network (25).

Several other markers expressed in fetal brain have been
reported. The intermediate filaments, nestin (26) and
vimentin (27), are specific to neural stem cells. Nestin is
found in CNS neuronal stem cells, is detected from E l l
onwards in the forebrain, and its expression continues until
around P10 in the mouse. Vimentin, a class El intermediate
filament found in CNS progenitor cells, is also expressed in
the retinal (28) and olfactory epithelium (29) of the adult
mouse. In addition, various transcription factors, such as
BF-1, Emxl, Emx2, Otxl, Otx2, andPax6, show forebrain-
specific expression in the fetus (30-34). Considering its
structure and expression pattern, FOG100 is different from
these factors.

FOG100 expression decreased dramatically between PO
and P2. It is noteworthy that there are reciprocal relation-
ships between the expression of FOG100 and oligoden-
drocyte (OL) markers. 0-2A progenitor cells differentiate
to the OL lineage at birth via premature OL cells (35). The
04 antigen, specific to the OL lineage, is first detected in the
rat cerebrum at PO (36). During this process, the expres-
sion of the 0-2A markers, A2B5, GD3, and vimentin,
decreases reciprocally (2). The number of 04-positive cells
has been shown to increase 10-fold by P3, and galactocere-
broside (GalC)-positive cells are first observed at P3 (36).
After differentiation of the premature OLs into postmitotic
OLs, a process that is defined by GalC positivity, the cells
begin to synthesize glycoproteins such as myelin-associated

glycoprotein, which belongs to the immunoglobulin super-
family (37). To date, no studies have demonstrated the
existence of any neuronal cell-associated molecules that
may be responsible for this process. Unlike neuronal cell
populations, OLs are broadly distributed throughout the
adult vertebrate nervous system, while OL precursors are
initially spatially restricted (38). Since FOG100 is local-
ized to the membrane fraction of the CNS throughout fetal
life, a study on its participation in the mechanism of
myelination may prove interesting.

In conclusion, we generated a monoclonal antibody,
Mab3C8, which recognizes FOG100, an O-linked sialo-
glycoprotein which is only expressed during embryogene-
sis.

We are grateful to Dr. D.B. Douglas for proofreading the manuscript.
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